
T H E R M A L  S T E S S E S  IN  A C O N T I N U O U S  P L A T E  I N G O T  
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The s t r e s s  field in a p la te  during sol idif icat ion and cooling f rom an ingot is analyzed in the 
e las t ic -body approximat ion.  

1 .  The s ta te  of s t r e s s  in a continuous ingot is l a rge ly  de te rmined  by the t he rma l  s t r e s s e s  which 
appea r  during the forming  p r o c e s s .  An analys is  of these  s t r e s s e s  is  t ied to the genera l  analys is  of t h e rma l  
s t r e s s e s  in a medium during its solidif icat ion and to a number  of analogous speci f ic  s i tuat ions:  growth of 
c ry s t a l s ,  hardening of p o l y m e r s ,  c rys ta l l i za t ion  of welding s e a m s ,  solidif icat ion of mol ten  rocks ,  f reez ing  
of soi ls ,  e tc .  The physical  aspect  of this p rob lem has not been explored thoroughiy enough. Mathemat ical ly ,  
however ,  the p rob lem has  been dealt  with in a number  of s tudies [1-12]. Every  analys is  so  fa r  was based  
on the theory of uncoupled t h e r m a l  deformat ion  and applied to one or  another  theo log ica l  model  of bodies 
with s imple  geome t r i e s .  

The f i r s t  s tudies based on the e las t ic -body  approximat ion were  made  by T. Hirone [1, 2], who ana-  
lyzed s t r e s s e s  in a f ree ly  solidifying cyl inder  and s p h e r e .  The e las t ic -body  approximat ion was subsequently 
used also in [3-7]. 

The genera l  approach to the calculat ion of t he rmoe l a s t i c  s t r e s s e s  in solidifying bodies was shown in 
[6], where  the t i m e  der iva t ives  of both the s t ra in  and the s t r e s s  t en so r  we re  a s sumed  to sa t i s fy  the conven-  
t ional defining equation of t he rmoe las t i c i ty  and all components  of the s t r e s s  t ensor  were  a s sumed  equal to 
zero at the in te rphase  boundary.  The l a t t e r  condition was also s t ipulated by T. Hirone,  V. L. Indenbom, 
and G. Reeder .  A s i m i l a r  approach in the e las t i c - -p las t i c  approximat ion was taken e a r l i e r  by B. Boley 
and I. Weiner  [8], who calculated the t he rma l  s t r e s s e s  in an infinitely l a rge  solidifying pla te  under  a Neu- 
mann t e m p e r a t u r e  distr ibution in the solid phase .  A solution in closed fo rm was obtained assuming,  in 
~ddition, a constant ra t io  of the depth of p las t ic  zones to the total  depth of solidifying m a s s .  The s t r e s s e s  
~ .  ce found then tO be tens i le  within the in te rphase  boundary zone and c o m p r e s s i v e  at the cooled su r face .  
r~. Tien and V. Kaump analyzed t he rm a l  s t r e s s e s  in a solidifying meta l l i c  plate  ingot on the bas i s  of an 
e l a s t i c - b e a m  model .  They suggested that during one-d imens ional  solidif icat ion t he r e  appea r s  a thin e las t ic  
solidifying l aye r  ac ros s  the ent i re  plate  width, equivalent to a beam ei ther  f ree ly  supported or  fixed at 
both ends. It was noted, m o r e o v e r ,  that the s t r e s s e s  at the in te rphase  boundary changed f rom c o m p r e s s i v e  
to tens i le  in the f i r s t  ve r s ion  and r ema ined  c o m p r e s s i v e  throughout in the second vers ion .  M. Ya. B rob -  
,~_~s~ :rod E. V. Surin [9] used  the e las t ic :body  model  for  analyzing the one-d imens ional  s y m m e t r i c a l  p rob-  
lore of an infinitely l a rge  pla te  solidifying under  a l inear  t e m p e r a t u r e  dis t r ibut ion in the building up solid 
phase .  The c h a r a c t e r  of the s t r e s s  dis t r ibut ion was analogous h e r e  to that  es tabl i shed in [8]. The method 
f f  reducing the p rob lem of s t r e s s e s  in an e las t ica l ly  solidifying body to conventional t h e r m o e l a s f i c i t y p r o b -  
~ems was developed by E. A. Iodko [11, 12]. In [12] he cons idered  the sol idif icat ion of a plate  and of an in-  
finitely long cyl inder ,  with the in terphase  boundary a s sumed  moving e i ther  l inear ly  or  parabol ica l ly  with 
t ime .  In the f i r s t  case  the region adjacent to the sol idif icat ion front  was found to be under  compres s ion  and 
the region nea r  the cooling su r face  under tension.  In the second case  the s t r e s s  distr ibution was found to 
be r e v e r s e .  In this study h e r e  the  authors  will consider  t h e r m a l  s t r e s s e s  in an e las t ica l ly  solidifying pla te  
under  a Stefan t e m p e r a t u r e  dis t r ibut ion in the solid phase .  We will analyze the dependence of the s t r e s s  
field in a pla te  on the sol idif icat ion r a t e ,  and a lso  the se t  of the rmophys ica l  p rope r t i e s  which c h a r a c t e r i z e  
this kind of situas Considerable  attention will be paid to an evaluation of s t r e s s e s  appear ing  in a plate  
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Fig. 1. 
s t r e s s e s  in a solidifying plate.  
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Distribution of thermal  

at the end of the solidification process  under various modes of sub- 
sequent cooling. The residual s t r e s s e s  will also be determined.  

2. We consider  the c lass ical  ~efan  model of a solidfying me-  
dium [13J existing in two s ta tes :  liquid and solid. Initially the me-  
dium is completely liquid at a t empera tu re  To. At any subsequent 
instant of t ime t > 0 the sur face  t empera tu re  of the medium remains 
constant Tc < To. At every instant of t ime the interphase boundary 
is in a definite position and its t empera tu re  is T s. 

We assume that the building up solid phase conforms to the 
e las t ic-body model.  We isolate ~dthin the liquid region an a rb i t r a ry  
material point with zero stress. Let that point find itself on the 

interphase boundary at the time t = T. This means that elastic 

stresses will from now on appear at the point and, varying at the 

rate aij, they will at time t > T reach the level 

t 

% = ff ihjdt. (1) 

Inasmuch as the s t r e s s  at the given point s tar t ing at t ime t := 7 sa t i s -  
ties Hooke's  Law 

~ j  = 21xogu + XoOU u + kcz (Ts - -  T) U u (2) 

therefore ,  differentiating (2) with respect  to t ime and insert ing the result ing expression into (1) will yield 
Hook's defining equation for a solidifying medium: 

t " t t 

% : + XoV,   o d r -  .f Tdt. (a) 

Using these concepts now, we will formulate  the problem in t e rms  of the theory of uncoupled the rmoe las -  
t icity and corresponding equations of motion, defining equations, initial conditions, and boundary condi- 
t ions. It will be assumed here  that the only nonzero components of both the s t r e s s  and the s t ra in  tensor  
a re  ~yy = ~zz = ~(x, t), eyy = ezz = e(x, t). 

2 O~T~ : alOxT 1, ~ .~  x ,~  oo ; 

OtT ,= aO~T, 0 < x "~ ~; 

r(x, O)= To; T(~, 0 = r~, 

3 ,  

ture  field as the load function. 
to the Stefan problem (4)-(7): 

~O~T - -  ~10~T1 -- pQoOt~, x = ~, 

pc)tu --  o ~  (x, O, o ,~ x < ~, 

a (x, t) = [{Ee  (x, t) - -  n E T ( x ,  t)} dr, 
T 

,f ~ (x, 0 dx = f (0, 
0 

(4) 

(5) 
(6) 
(7) 

(s) 

(9) 

(io) 

Problem (8)-(10) is solved in the quasistat ic  mode, with the independently determined t empera -  
The t empera tu re  distribution in the solid phase corresponds  to the solution 

T == T~ -- -Q- l/ ~ - p e x p ( p 2 ) e r f  ( P t  ) (11) 

= pV~: (i 2) 

Here Q = Q0 + e l (T0--Ts) ,  i . e . ,  the superheat  of the liquid is included in the equivalent heat of solid- 
~fieation. The solution to the problem ought to be sought in the form of a function which sat isf ies the con- 
dition of compatibil i ty with regard  to s t ra ins  (a~l e~j = 0). In our case this condition is satisfied identically 
and, therefore ,  e(x, t) = ~.(t). With the aid of this relation, and considering the plate to be free of external 
forces  f(t) = 0, we find that the balance of forces (10) and the t empera tu re  field (11) yield 
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Distribution of thermal  s t r e s se s  ac ross  the section of a 
cooling plate, f rom the instant solidification has been completed: 
(a) p = 0 . 1 a n d B i = 0 ,  F o = 0  (1), 0.01 (2), 0.025 (3), 0.05 (4), 0.10 
(5), oo (6), (b) p = 0 . 5 a n d B i = 0 . 5 ,  N = 3 . 6 6 ,  F o = 0  (1), 1.0 (2), 
2.5 (3), co (4). 

aQ 1 
(t) ::  T [1 - -  exp (p2)] t - -  

The prerequis i te  distribution of thermal  s t r e s ses  in a solidifying plate is found from (9) and (13) : 

EaQ 
_ _ =  V-~ pexp (p~) {erf (p) - erf (--~- p )} 

+{ 1, exp(p2)-- 1 n =- 

(13) 

(14) 

Expression (14) indicates that the generated s t r e s ses  a re  proport ional  to the quantity EaQ/c ,  which char -  
ac ter izes  macroscopica l ly  the forces of interatomic bonds. It is to be noted that the dimensionless quantity 
Q0a/c,  with the mean- in tegra l  values of a and c over the t empera tu re  range f rom room to melting, is the 
same for severa l  metals  and equal to 0.9 �9 10 -2. This can be easily explained in the case of s imple mono-  
atomic substances,  such as metals ,  in the light of Debye 's  theory of heat capacity. Accordingly, the level 
of s t r e s se s  generated during the solidification of various metals  is determined only by the magnitude of 
the elast is t ici ty modulus E and of the solidification pa rame te r  p which charac te r i zes  the p rocess  conditions 
and the thermophysical  proper t ies  of the medium. 

In Fig. 1 is sho~n the distribution of thermal  s t r e s ses  [o-(x/~)c/c~ EQ] = f(x/~) in a solidifying plate, 
which has been calculated according to Eq. (14) for various p rocess  conditions (p = 0.5 and 0.675). 

It follows from Fig. 1 that the solid region adjacent to the solidification front is under tension, while 
the region adjacent to the plate sur face  is under compress ion .  The maximum tensile s t r e s s  increases  
fast as p inc reases .  At the same time, at any value of p, near the cooled surface there  appears a plastic 
region. When p is small  (p < 0.1), expression (14) can be simplified by retaining only the f i rs t  t e rms  in p 
of the exponential expansion and of the Gauss function: 
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4. Af te r  the  so l id i f ica t ion  p r o c e s s  has  been comple ted ,  a cont inuous ingot  cont inues  to cool  down 
within the  zone of s e c o n d a r y  cool ing and in a i r .  At the end of so l id i f ica t ion  (~ = l) the t e m p e r a t u r e  field of 
the ingot  is ,  a c c o r d i n g  to (11), 

H e r e  2l is the  p la te  th i ckness .  
(14), 

(16) 

The d i s t r ibu t ion  of t h e r m a l  s t r e s s e s  at that  ins tant  of t ime  is ,  a c c o r d i n g  to 

a(-~--,p)c __V_~pexp(p2){erf(p)_erf(+p)} 
agQ 

X 
-k {exp (p2)-- 1} In I (17) 

The subsequent  changes  in the  s t r e s s e s  can be d e t e r m i n e d  f r o m  the known t e m p e r a t u r e  field of the cool ing 
p la te .  For  this  pu rpose ,  we so lve  the  p r o b l e m  of s y m m e t r i c a l  coot ing  of an inf ini te ly  l a r g e  pta te ,  a s s u m -  
ing that  the  hea t  t r a n s f e r  at i ts  boundary  follows Newton ' s  Law: 

a ,  {T (l, t) - -  ra}. OxT (l, t) = T 

H e r e  T a is the  t e m p e r a t u r e  of the  cool ing med ium and a T is  the coeff ic ient  of hea t  t r a n s f e r  at the p la te  
s u r f a c e .  

As the  ini t ia l  t e m p e r a t u r e  d i s t r ibu t ion  we c o n s i d e r  (16), then the  so lu t ion  to the  g iven t h e r m a l  p r o b -  
lem with i t s  gene ra l  so lut ion in [13] will be 

4~n 

I 

-~- __x  d x 

0 

H e r e  ,a n a r e  the roo t s  of  the c h a r a c t e r i s t i c  equat ion ,an '= Bi ~ eot,a n, Reducing  the in t eg ra l  on the r i gh t -  
hand s ide  and then s impl i fy ing ,  we obtain 

(* ) 
c - -  Q -- A,, cos/t,~ 1 - -  cxp (:--ix~Fo), 

A~ := Nms - -  ~ p exp (p~) erf (p) m~ § h n g ~ P  exp (p2) 
I 

• . exp(,-/--p cos~t,~( 1 - -  d - F  ' 

0 

4sin ~,~ 4fx,~ c (T s - -  Ta) 
m~=.: h , ~ = - -  ; N = .. 

2~t~ -~- sin 2~t,~ 2Vt,~-d- sin 21~,~ Q 

(18) 

With the aid of  the  t e m p e r a t u r e  f ield we can then find the  d i s t r ibu t ion  of  s t r e s s e s  g e n e r a t e d  in the 
p la te  s t a r t i n g  f r o m  the t i m e  so l id i f ica t ion  has  been  comple ted .  The m e a n - o v e r - t h e - s e c t i o n  p la te  t e m p e r a -  
t u r e  at  the ins tan t  the  l iquid phase  van i shes  is ,  a c c o r d i n g  to (16), 

< T > = T c -~- Q--{exp (p ~) - -  1}. (19) 
C 

The c o r r e s p o n d i n g  m e a n  value  of d i s t r ibu t ion  (18) is 

( T - -  T a ) = A~ exp ( - -~Fo) .  (20) 
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Insert ing (16), (19), (18), and (20) into (9) at T = 0 yields 

EczQ �9 exp (p~) - -  1 - -  V . ~  p exp (p~) {erf (p) - -  err P 

; cosl% ( 1  - -  / ) }  exp (--[~nFo). (21) 

r i l l  

The general  distribution of thermal  s t r e s se s  generated at an instant t > t e is determined,  according to the 
principle of s t r e s s  superposit ion, by adding expressions (17) and (21): 

~EQ = {exp (p2)_ 1} . 

+ 
a ~ l  

We will now consider  an extreme case of this solution, when p << 1 (low ra te  of solidification) and 
Bi << 1 (low ra te  of cooling f rom the instant t = t e on). The la t ter  condition means that a change in the 
original t empera tu re  distr ibution (16) is connected p r imar i ly  with an equalization of tempera tures  ac ross  
the plate section.  In this case we have 

~t,~ =: ~ ( n - -  1); m~:= 6,~; 2h,~ 1 --cos~t . . . .  4 1 --(--1)  n-x . 
~ ~(~- i) '  ' 

= - - c o s t ( n - - I ) (  I - - ~ ) ,  n~> 2. 

Thus, the s t r e s s  distribution (22) becomes 

aQE 
x 4 ~ 1 - -  (--1) n 

n = l  

It is easy to see that only the se r ies  t e rms  with even subscr ipts  n a re  nonzero,  which contributes to a 
fas ter  convergence.  

In Fig. 2a is shown the distribution of thermal  s t r e s se s  calculated according to express ian (23) for 
solidification at p = 0.1 and for various values of the Fourier  number.  The curve for Fo = 0 has been 
plotted according to express ion (17). A curve represent ing more  severe  thermal  conditions of plate fo rm-  
ing is shown in Fig. 2b. The eMeulations were based on express ion (22) under conditions p = 0.5 and Bi 
= 0.5. The curves correspond to instants of t ime Fo (0, 1, 2.5, and ~)~ The Fo = 0 curve, as before,  
has been plotted according to expression (17). A compar ison between both d iagrams of elast ic s ta te-of -  
s t r e s s  formation in a continuous ingot yields a quantitative indication about the dynamics of s t r e ss  genera-  
tion and development under various conditions of plate solidification and cooling. It is easily seen that the 
diagrams indicate not only different residual  s t r e ss  levels but also different stabilization ra tes .  Thus, in 
the f i rs t  case (pig. 2a) the s t r e s s  distribution remains  close to the residual  leveI and stabilizes within a 
t ime Fo ~ 0.5, while in the second case (Fig. 2b) it s tabil izes within a t ime Fo ~ 4. For a completely 
cooled plate the 1eve1 and the distribution of residual  s t r e s s e s  and s t ra ins  does not depend, in t e rms  of the 
elast ic-body approximation, on the conditions of ingot cooling after complete solidification. Thus, the 
general  solution (22) yields for the center  of the ingot (x = l) 

a(1, Fo)c =exp(p2) - 1 

~ ) ,  + A,, 
.= ,  ~ .  ( ~ + Bi~) ~ 
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The residual  s t r e s ses  cor respond to Fo ~ ~o and approach asymptot ical ly  the 

(1, Fo) c = exp (p2) _ 1 
~QE 

level.  

(24) 

The effect of the cooling rate  on an already solidified ingot becomes the governing factor  in regard  to 
c rack  formation.  Namely,  as has been said, the rate  of external cooling affects the t ime necessa ry  for 
t empera tu re  equalization. The proper  cooling ra te  should be such as to make the s t r e s s e s  at the thermal  
center  of an ingot inc rease  at the minimum possible ra te  and, thus, to fulfill the strength requi rement  in 
the mos t  dangerous segment  of the ingot. 

t e 

uij 

eij 
~ij 
| 

uij 
~0, /~0 
k 
O~ 

T 
Ti 

Ts 
Te 
Ta 
To 
Qo 
E 

P 

X 

l 
h 
C 

Cl 
a 

P 
O~T 
Bi = O ~ T l / k  ; 

Fo = a ( t - - t e ) / 1 2 .  

NOTATION 

is the t ime coordinate; 
is the instant of t ime when the selected mater ia l  point moves into the interphase bound- 
ary;  
is the end of solidification p rocess ;  
is the s t r e s s  tensor ;  
is the s t r e s s - r a t e  tensor ;  
is the s t ra in  tensor;  
is the s t r a i n - r a t e  tensor ;  
is the one third t r ace  of the s t ra in  tensor ;  
is the unit tensor ;  
a re  the Lamg constants;  
is the modulus of bulk compress ion;  
is the l inear  expansivity; 
is the instantaneous t empera tu re  of solid phase; 
is the t empera tu re  of liquid phase; 
is the solidification point; 
is the t empera tu re  of the plate surface;  
is the t empera tu re  of the cooling medium; ..... 
is  the initial t empera tu re  of the liquid; 
is the heat of solidification; 
is the modulus of elast ici ty;  
is the density; 
is the component of the ra te -of -d i sp lacement  vector ;  
is the space coordinate; 
is the coordinate of the interphase boundary; 
is half the plate thickness;  
is the thermal  conductivity; 
is the specific heat of the solid phase; 
is the specif ic  heat of the liquid phase; 
is the thermal  diffusivity; 
~s the solidification pa ramete r ;  
is the heat t r ans fe r  coefficient; 

i. 

2. 
3. 
4. 

5~ 
6. 
7. 
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