THERMAL STESSES IN A CONTINUOUS PLATE INGOT

V. A. Zhuravlev and V., R. Fidel'man UDC 539.319:536.425

The stress field in a plate during solidification and cooling from an ingot is analyzed in the
elastic-body approximation.

1. The state of stress in a continuous ingot is largely determined by the thermal stresses which
appear during the forming process. An analysis of these stresses is tied to the general analysis of thermal
stresses in a medium during its solidification and to a number of analogous specific situations: growth of
crystals, hardening of polymers, crystallization of welding seams, solidification of moiten rocks, freezing
of soils, ete. The physical aspect of this problem has not been explored thoroughly enough. Mathematically,
however, the problem has been dealt with in a number of studies [1-12]. Every analysis so far was based
on the theory of uncoupled thermal deformation and applied to one or another rheological model of bodies
with simple geometries.

The first studies based on the elastic~body approximation were made by T. Hirone [1, 2], who ana-
lyzed stresses in a freely solidifying cylinder and sphere. The elastic-body approximation was subsequently
used also in [3~7].

The general approach to the calculation of thermoelastic stresses in solidifying bodies was shown in
6], where the time derivatives of both the strain and the stress tensor were assumed to satisfy the conven-
tional defining equation of thermoelasticity and all components of the stress tensor were assumed equal to
zero at the interphase boundary. The latter condition was also stipulated by T. Hirone, V. L. Indenbom,
and G. Reeder. A similar approach in the elastic—plastic approximation was taken earlier by B. Boley
and I. Weiner [8], who calculated the thermal stresses in an infinitely large solidifying plate under a Neu-
mann temperature distribution in the solid phase. A solution in closed form was obtained assuming, in
1ddition, a constant ratio of the depth of plastic zones to the total depth of solidifying mass. The stresses
- ve found then to be tensile within the interphase boundary zone and compressive at the cooled surface.
n. Tien and V. Kaump analyzed thermal stresses in a solidifying metallic plate ingot on the basis of an
elastic-beam model, They suggested that during one-dimensional solidification there appears a thin elastic
solidifying layer across the entire plate width, equivalent to a beam either freely supported or fixed at
both ends. It was noted, moreover, that the stresses at the interphase boundary changed from compressive
to tensile in the first version and remained compressive throughout in the second version. M. Ya. Brob-
man and E. V. Surin [9] used the clastic-body model for analyzing the one-dimensional symmetrical prob-
lem of an infinitely large plate solidifying under a linear temperature distribution in the building up solid
rhase. The character of the stress distribution was analogous here to that established in [8]. The method
of reducing the problem of stresses in an elastically solidifying body to conventional thermoelasticity prob-
iems was developed by E. A. Iodko [11,12], In [12] he considered the solidification of a plate and of an in-
finitely long cylinder, with the interphase boundary assumed moving either linearly or parabolically with
time. In the first case the region adjacent to the solidification front was found to be under compression and
the region necar the cooling surfaceunder tension. In the second case the stress distribution was found to
be reverse. In this study here the authors will consider thermal stresses in an elastically solidifying plate
under a Stefan temperature distribution in the solid phase. We will analyze the dependence of the stress
field in a plate on the solidification rate, and also the set of thermophysical properties which characterize
this kind of situation. Considerable attention will be paid to an evaluation of stresses appearing in a plate
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at the end of the solidification process under various modes of sub~
sequent cooling. The residual stresses will also be determined.

XQE RN
/ 2. We consider the classical Stefan model of a solidfying me-
dium {13] existing in two states: liquid and solid. Initially the me-
dium is completely liquid at a temperature Ty. At any subsequent
p=6500 instant of time t > 0 the surface temperature of the medium remains
constant T'C < Ty. At every instant of time the interphase boundary
0 is in a definite position and its temperature is Tg.
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Wec assume that the building up solid phase conforms to the
elastic-body model. We isolate within the liquid region an arbitrary
‘material point with zero stress. Let that point find itself on the
-410 interphase boundary at the time t = T. This means that elastic
stresses will from now on appear at the point and, varying at the
rate 0jj, they will at time t > 7 reach the level

t
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Fig. 1. Distribution of thermal v

stresses in a solidifying plate. Inasmuch as the stress at the given point starting at time t ~ 7 satis-

fies Hooke's Law
Gij == 2ty -+ AOU 5 + ka(Ts — T) Uy, (2)

therefore, differentiating (2) with respect to time and inserting the resulting expression into (1) will yield
Hook's defining equation for a solidifying medium:

i : Tt t
01y == 20, | Byt 4 AUy Ot — b [ Tt (3)
T T T
Using these concepts now, we will formulate the problem in terms of the theory of uncoupled thermoelas-
ticity and corresponding equations of motion, defining equations, initial conditions, and boundary condi-
tions. If will be assumed here that the only nonzero components of both the stress and the strain tensor
are oyy = 0,, = 0(x, t), eyy = &5, = &lx, ).

0,T, == a,05Ty, E<x< o0 4)
0T == adiT, 0 <x<<E; (5)
T, O0=T; TE =Ts (6)
A0, T —1,0,T; = pQ,0E, x=E, (7
00U = 0.0 (x, §), 0<x<CE, (8)
14
o(x, ) — |{Ee(x, H—aET (x, 1)} df, (9)
£
{o@, nax=F@. 10)
0

3. Problem (8)-(10) is solved in the quasistatic mode, with the independently determined tempera-
ture field as the load function. The temperature distribution in the solid phase corresponds to the solution
to the Stefan problem (4)-(7):

T=T,-- —?— v m pexp(p?erf (p%) , (1)

&= pV/ 4at. 12)

Here Q = @ + ¢4{Ty— Tg), i.e., the superheat of the liquid is included in the equivalent heat of solid-
ification. The solution to the problom ought to be sought in the form of a function which satisfies the con-
dition of compatibility with regard to strains (afd &ij = 0). In our casc this condition is satisfied identically
and, therefore, £{x, t) = £(t). With the aid of this rclation, and considering the plate to be free of external
forces f(t) = 0, we find that the balance of forces (10) and the temperature field (11) yield
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Fig. 2. Distribution of thermal stresses across the section of a
cooling plate, from the instant solidification has been completed:
(a) p=0.1and Bi =0, Fo =0 (1), 0.01 (2), 0.025 (3), 0.05 (4), 0.10
(3), = (6), (b) p=0.5and Bi = 0,5, N=23.66, Fo=0 (1), 1.0 (2},
2.5 (3), « (4).

70— 21— exp (o] . 13)
2c ot
The prerequisite distribution of thermal stresses in a solidifying plate is found from (9) and (13):

o (—g*, p)c B .
_——E;Q— =V n pexp (p) {erf (p) — erf (E— p )}

+ {eXp (p*) — 1} !n% : (14)
Expression (14) indicates that the generated stresses are proportional to the quantity EaQ/c, which char-
acterizes macroscopically the forces of interatomic bonds. It is to be noted that the dimensionless quantity
Qqa/c, with the mean-integral values of & and ¢ over the temperature range from room to melting, is the
same for scveral metals and equal to 0.9-107%, This can be easily explained in the case of simple mono~
atomic substances, such as metals, in the light of Debye's theory of heat capacity. Accordingly, the level
of stresses generated during the solidification of various metals is determined only by the magnitude of

the elastisticity modulus E and of the solidification parameter p which characterizes the process conditions
and the thermophysical properties of the medium.

In Fig. 1 is shown the distribution of thermal stresses [0{x/{)c/aEQ] = {(x/£) in a solidifying plate,
which has bcen calculated according to Eq. (14) for various process conditions (p = 0.5 and 0.675).

It follows from Fig. 1 that the solid region adjacent to the solidification front is under tension, while
the region adjacent to the plate surface is under compression. The maximum tensile stress increases
fast as p increases. At the same time, at any value of p, near the cooled surface there appears a plastic
region. When p is small (p < 0.1), expression (14) can be simplified by retaining only the first terms in p
of the exponential expansion and of the Gauss function:

X

o ——~,p)c

_ ( £ - ( In-"——2-% Lo > . (15)
oEQ 1—p? 3 g
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4. After the solidification process has been completed, a continuous ingot continues to cool down
within the zone of secondary cooling and in air. At the end of solidification (£ = ) the temperature field of
the ingot is, according to (11),

T (wf-—, p) =T, + —%L Y 7 exp (p?) erf (p %ﬁ) . (16)

Here 21 is the plate thickness. The distribution of thermal stresses at that instant of time is, according to
(14),

af £ )c . p
LT =Vapesp(p) {erf (p) —eri (—, P)}.

+ {exp () — 1} In —;‘— . (17)

The subsequent changes in the stresses can be determined from the known temperature field of the cooling
plate. For this purpose, we solve the problem of symmetrical cooling of an infinitely large plate, assum-
ing that the heat transfer at its boundary follows Newton's Law:

AT, 1) = _‘;_ (T, H—Ta.
Here T, is the temperature of the cooling medium and a7 is the coefficient of heat transfer at the plate

surface.

As the initial temperature distribution we consider (16), then the solution to the given thermal prob-
lem with its general solution in [13] will be

T(L,F(;)__Ta:Z:__iL__
{ - 2u, -+ sin2p,

1 : '
><{HTC;Tam;«—Q—]'Rexp(p2)erf(p—)—c—>‘|cospn( l—i)d(f—)}
. ¢ L/, l {

o

X COS b, ( 1 — —'IE—) exp (—uZFo).

Here pp are the roots of the characteristic cquation u, = Bi-cotu,. Reducing the integral on the right-
hand side and then simplifying, we obtain

T(—{—,Fo)—-T -y
l . ——=2‘ Ancosun<1—~})e><p(;—uﬁF0)f (18)

. n=] .
A, = Nm, —y apexp(p?erf(p)m, —h, Vapexp(?

1
[ x ! X X
X g‘exp( -~-p)cospn( 1 ———-—)d(—-),
. ! ! {
p \
- 451““’7; R o= 4&__ - N = C(TS_Ta)
' u, + sin 2p,, Q '

n

2!"’!4. + sin 2“'11

With the aid of the temperature field we can then find the distribution of stresses generated in the
plate starting from the time solidification has been completed. The mean-over-the-section plate tempera-
ture at the instant the liquid phase vanishes is, according to (16),

(Ty =T+ Ef‘{exp ) —1}. "

The corresponding mean value of distribution (18) is

(T—T,y =< Z:An ZPn exp (—p2Fo). (20)
c Pn

n=1
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Inserting (16), (19), (18), and (20) into (9) at 7 = 0 yields

% (—l;azo ) = exp () — 1 — Vi pexp (5) {erf,(p) - (% p)}

+ 2 A, [—S'P—‘L —cosun( 1— i)}exp(—unFo). 1)
’ ' Mn [

n=

The general distribution of thermal stresses generated at an instant t > tg is determined, according to the
principle of stress superposition, by adding expressions (17) and (21}:

+2An ;——S%—”L — s p,n( 1 —%)}exp(—uﬁFo). (22)
n=1 " )

We will now consider an extreme case of this solution, when p ¥ 1 (low rate of solidification) and
Bi « 1 (low rate of cooling from the instant t = t, on). The latter condition means that a change in the
original temperature distribution (16) is connected primarily with an equalization of temperatures across

the plate section. In this case we have
l—cosp l —(—1)=
i = m(n—1); m,=28,; 2h LS L ;
2 ( ) 1 n }L?z nz(n-— 1y

smp“—cosp.n( 1 — _:_> :—cosrc(n——l)( I—§) y 12> 2.
129

Thus, the stress distribution (22) becomes
G (_x_ , Fo ) c ki
1 x

- x4 L= (I s (n—
QE = Pz{‘““z—‘n‘z - coss(n—1)

n=={

X ( 1 — —J;—)} exp [—n*(n — 1)*Fol . (23}

It is easy to see that only the series terms with even subscripts n are nonzero, which contributes to a
faster convergence.

In Fig. 2a is shown the distribution of thermal stresses calculated according to expression (23) for
solidification at p = 0.1 and for various values of the Fourier number. The curve for Fo = 0 has been
plotted according to expression (17). A curve representing more severe thermal conditions of plate form-
ing is shown in Fig. 2b. The calculations were based on expression (22) under conditions p = 0.5 and Bi
= 0,5. The curves correspond to instants of time Fo (0, 1, 2.5, and <), The Fo = 0 curve, as before,
has been plotted according to expression (17). A comparison between both diagrams of elastic state-of-
stress formation in a continuous ingot yields a quantitative indication about the dynamics of stress genera-
tion and development under various conditions of plate solidification and cooling. It is casily seen that the
diagrams indicate not only different residual stress levels but also different stabilization rates. Thus, in
the first case (Fig. 2a) the stress distribution remains close to the residual level and stabilizes within a
time Fo = 0.5, while in the second case (Fig. 2b) it stabilizes within a time Fo = 4, For a completely
cooled plate the level and the distribution of residual stresses and strains does not depend, in terms of the
elastic-body approximation, on the conditions of ingot cooling after complete solidification. Thus, the
general solution (22) yields for the center of the ingot (x = 1)

a(l, Foje 51
o0 exp (p%)
# Wi 1= ) e (o)
=l Ba (4 4 BE)
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The residual stresses correspond to Fo — « and approach asymptotically the

a(l, Fo)c_

- ) — 1 (24)
o0F exp ()

level,

The effect of the cooling rate on an already solidified ingot becomes the governing factor in regard to
crack formation. Namely, as has been said, the rate of external cooling affects the time necessary for
temperature equalization. The proper cooling rate should be such as to make the stresses at the thermal
center of an ingot increase at the minimum possible rate and, thus, to fulfill the strength requirement in
the most dangerous segment of the ingot.

NOTATION

t is the time coordinate;
is the instant of time when the selected material point moves into the interphase bound-~
ary;

te is the end of solidification process;

03 is the stress tensor;

&3 is the stress-rate tensor;

&4j is the strain tensor;

&jj is the strain-rate tensor;

@ is the one third trace of the strain tensor;

Uij is the unit tensor;

T are the Lamé constants;

kK is the modulus of bulk compression;

o is the linear expansivity;

T is the instantaneous temperature of solid phase;

Ty is the temperature of liquid phase;

Ts is the solidification point;

Te is the temperature of the plate surface;

Ty is the temperature of the cooling medium;

T, " is the initial temperature of the Hquid;

Qo is the heat of solidification;

E is the modulus of elasticity;

ol is the density;

u is the component of the rate-of-displacement vector;

X is the space coordinate;

¢ is the coordinate of the interphase boundary;

Z is half the plate thickness; ‘

A is the thermal conductivity;

c is the specific heat of the solid phase;

cy is the specific heat of the liquid phase;
a is the thermal diffusivity;

P is the solidification parameter;

aT is the heat transfer coefficient;

Bi =agl/A;

Fo = alt—te)/12.
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